
Unfriendly COTS Integration – Instrumentation and Interfaces
for Improved Plugability

Alexander Egyed

Teknowledge Corporation
4640 Admiralty Way, Suite 231

Marina Del Rey, CA 90292, USA
aegyed@ieee.org

Robert Balzer
Teknowledge Corporation

4640 Admiralty Way, Suite 231
Marina Del Rey, CA 90292, USA

balzer@teknowledge.com

Abstract

It is becoming increasingly desirable to incorporate
Commercial-off-the-Shelf (COTS) tools as software
components into larger software systems. Due to their
large user base, COTS tools tend to be cheap, reasonably
reliable, and functionally powerful. Reusing them as
components has the benefit of significantly reducing
development cost and effort.

Despite these advantages, developers encounter major
obstacles in integrating most COTS tools because these
tools have been constructed as stand-alone applications
and make assumptions about their environment that do
not hold when used as part of larger software systems.
Most significantly, while they frequently contain
programmatic interfaces that allow other components to
obtain services from them on a direct call basis, they
almost always lack the notification and data synchronicity
facilities required for active integration.

In this paper, we present an integration framework for
adding these notification and data synchronization
facilities to COTS tools so that they can be integrated as
active software components into larger systems. We
illustrate our integration framework through tool suites
we constructed around Mathworks’ Matlab/Stateflow and
Rational’s Rose (two widely-used, large COTS tools). Our
experience to date is that it is indeed possible to
transform standalone COTS tools into software
components.

1. Introduction

Incorporating Commercial-off-the-Shelf (COTS) tools

into new and existing software systems has found strong
and widespread acceptance in software development.
There are many advantages in doing so. As a result of
their large user base, COTS tools usually have stable
interfaces (APIs) and are fairly reliable. Their large user
base also makes COTS tools more generic and thus
functionally powerful since they often have to satisfy
different user groups with different needs and goals.
COTS tools also tend to represent large pieces of
software, much larger than those of reusable source code

libraries. Thus the ability to reuse even a single COTS
tool can significantly reduce development cost and effort
[3]. All these features make COTS tools very attractive
reuse targets in the wake of exploding software
development costs.

However, the lack of source code requires COTS tool
reuse be treated differently than code reuse [1,3,15].
COTS tools cannot be tailored from “within” by
modifying their code. Instead, changes must be imposed
from the outside via wrappers or glue code [4,7]. Thus,
incorporating COTS tools into software systems is risky
[10,15]. “The fact is that using COTS software brings
with it a host of unique risks quite different from those
associated with software developed in-house.” [3]

In an “ideal world,” COTS tools would be built with
complete and unrestricted access its data stores and
functionality. In an “ideal world” these COTS tools could
be customized to their surroundings so that they can
instigate interaction like in-house developed components.
Sadly, “real world” COTS tools are often only partially
accessible and customizable, greatly limiting their reuse.

This paper proposes an architectural framework for
tightly integrating COTS tools with other components by
augmenting those COTS tools with change notifications
that enable the other components to remain synchronized
with the evolving data maintained by the COTS tool.

We will illustrate the use of this COTS integration
framework on two complex, large-scale software systems
Mathwork’s Matlab/Stateflow and Rational’s Rational
Rose to demonstrate the tight, active integration that can
be achieved between those tools and several components
we developed.

While our framework will not work for all COTS
integration projects, our experience in applying it to
several major tools (e.g. [19]) indicates that it has broad
applicability.

Section 2 presents our framework and identifies the
basic interface and instrumentation technologies required
to implement it. Section 3 demonstrates our framework
with Matlab/Stateflow and other tools using particular
interface and instrumentation technologies. Section 4
reviews the space of interface and instrumentation
technologies that could be used in implementing our

Published in the Proceedings of the 16th IEEE International Conference on Automated Software Engineering (ASE),
San Diego, USA, November 2001, pp. forthcoming.

framework. Sections 5, 6, and 7 describe the applicability
of this work, our future plans, and conclusions.

2. COTS Integration Architectures

Our framework provides two types of COTS
integration. The first, Directional Access, provides a
standard interface for accessing and setting the data
provided by a COTS tool. The second, Directional Access
with Notifications, augments the first with notifications
that enable interested components to track changes being
made by the COTS tool to the data it provides so that they
remain synchronized to the current state of that data.

2.1. Directional Access

The most commonly attempted (traditional) integration

architecture is to have in-house-developed components
access passive, service-providing COTS tools. Note that
with passivity we imply that the given COTS tool has no
knowledge about its surrounding components (whether
they are in-house or other COTS). It is the nature of
passive components not to initiate interactions with the
outside world but instead to wait for service requests.
From the perspective of the overall system architecture it
thus appears as if integrated COTS tools are dormant
unless requested to do something (although internally they
may not be passive as was discussed earlier). We refer to
the integration of in-house developed components with
COTS tools as “directional access” since only in-house
developed components can access COTS components but
not vice versa.

Directional access is generally realized via wrapper or
glue code [7] that forms a defined interface for a given
COTS tool. The interface is then used by other software
components to interact with the COTS tool (Figure 1 top).
Usually, the interface provides methods to read and write
data from/to the COTS tool (data access) or to trigger
some form of processing (control access). Depending how
the interface is realized, multiple “client” components may
interact with the COTS tool. Our implementation follows
this tradition and allows multiple clients to interact with
the COTS tool. All of the particular COTS tool’s APIs are
hidden inside the framework’s constructed interface for
that tool.

As an example of Directional Access integration, we
built a model transformation tool called UML/Analyzer
[6] that abstracts class and object diagrams [5] created in
Rational Rose (a CASE tool that supports modeling in the
Unified Modeling Language (UML) [5]). It uses the
framework’s Access module to access the Rational Rose
models. That module internally uses Rational Rose’s
native APIs (COM) to access the required data.

The passivity of directional access has the
disadvantage that COTS components may undergo
internal changes of which other, neighboring components
may be unaware. For instance, the UML/Analyzer model,
which is extracted from Rational Rose reflects the state of
when it was last extracted; a severe deficiency since
Rational Rose models can be modified concurrently by
interacting users.

2.2. Directional Integration with Notification

While this integration framework could be applied to

any COTS tool that maintains evolving data to be shared
with other components, we have focused on COTS tools
with a user driven GUI.

In an ideal world, a COTS tool (like Rational Rose)
could be customized to notify other components (like
UML/Analyzer) of internal changes (i.e., model changes).
In such an ideal world, the COTS tool would become an
active participant in the software system into which it is
integrated. While many COTS tools provide data and
control integration (e.g.., via import functions or tool add-
ins features), it is rare for them to provide a tailorable set
of notifications. Our framework provides a way to add
data and control notification to COTS tools and
architecture for using those notifications.

Figure 1 (bottom) illustrates our proposed framework
for providing data and control integration to COTS tools.
In our framework, active integration builds on top of
passive integration by adding a CallBack Manager that
handles notifications issued by the augmented COTS tool.
The callback manager acts as a broker between the COTS
tool and the potentially large set of software components
that may be interested in the COTS tool’s activities.

Class1Class1

COTS

+get operations()
+set operations()

Access

Interface

+register()
+unregister()
+notify()

Callback Manager

Observer(i)

forced
access

COTS

+get operations()
+set operations()

Access

Interface

+notify()

+callback()

Directional Access

Directional Access
with Data and Control

Notification

Component

Component

Figure 1. (Multi-) Directional Access with/without Data and

Control Notification using Observer Pattern

Figure 1 shows the use of observers that, coupled with the
callback manager, realize the interaction between
components and COTS tools. Specifically, observers get
registered to callback managers to indicate interest in
being notified about something the COTS component has
to offer (see also observer design pattern [9]). Observers
are built specifically to satisfy the interaction needs of the
components interested in the COTS tool’s activities. The
evaluation of what to notify and how to notify is left to the
observer (i.e., filtering and syntactic/semantic
transformations like data type conversions). If components
reside on distributed nodes (e.g., different machines) the
observer also has to manage transportation issues (e.g.,
remote method invocations [18]). Observers thus can
implement “connectors” between COTS tools and other
components.

Thus, Active Integration retains the ease of access to
COTS tools (see direct links that connect components to
the interface in Figure 1 bottom) provided by Passive
Integration, but also provides notifications that allow
COTS tools to initiate interactions.

 In Section 3, we will demonstrate the integration of a
simulator we developed with the Matlab/Stateflow. COTS
tool in which the latter triggers changes to the simulator
even though it is unaware of the existence of the
simulator.

Importantly, the augmented access upon which the
notifications rely, are encapsulated via a well-defined and
sound architectural framework. The use of a sound
architectural framework in turn makes it easier to plug
COTS tools into larger software systems. Our framework
thus improves the “plugability” of COTS tools; the lack of
which is generally seen as a significant reason for failures
during component-based development [3,10]. For
instance, we will show later that we can independently
operate our statechart simulator on either
Matlab/Stateflow or Rational Rose with only minor
changes to the source code of the simulator. This form of
“plugability” makes it possible to replace COTS tools in
software systems with only minimal impact onto other
components.

Conceptually, directional access with notification
realizes bi-directional integration between any given set of
COTS tools and in-house developed component. The
reason why we call this integration “directional” (implying
one direction) is because our framework only needs to
provide a standard interface for the COTS tools (via our
Access interface) for in-house developed components but
not vice versa since those components have public
interfaces (or can be made to have public interfaces). The
data and control notification mechanisms that the
framework augments can then use the provided, public
interfaces of other components to interact with them.

Normally, interactions between COTS tool and other
components are asynchronous (i.e., in case of change

notifications), however, synchronous interactions (via
locking and unlocking methods) are also supported. These
are discussed in the Matlab/Stateflow case study in the
next section.

Directional integration with notification is quite
powerful since it enables the integrator to exert a great
degree of control over COTS tools. Indeed, we found that
directional integration with notification was sufficient for
all of our group’s COTS integration needs. Specifically,
we used this form of integration to augment the public
interface of Microsoft Word for added security features
[19], Microsoft PowerPoint for richer modeling features
[11], and Rational Rose for model access.

2.3. Choice of Architecture

Choosing an integration architecture depends on the

interaction needs of involved components. In some cases,
non-functional qualities are also important decision
factors. For instance, directional access with data and
control notification can be used to create and maintain
consistent local copies of COTS data stores to improve
access speed, i.e., in cases where interacting with the
COTS tool is time consuming due to marshalling and de-
marshalling in COM or CORBA. Naturally, the choice of
integration type also affects other qualities like reliability,
robustness, or security for the same reasons.

Our integration framework is not only incrementally
constructible but is also incrementally useable. Figure 1
demonstrates incremental construction in that directional
access is part of directional access with notification. It is
also possible to have multi-directional access with
notifications between COTS tools using mirror images of
several directional accesses with notifications. This
discussion is outside the scope of this paper.

Our integration framework can also support multiple
architectures simultaneously. In the next section we will
show that the COTS tool Matlab/Stateflow can
simultaneously interface with one component (the Model
Browser) via directional access, with another component
(the SDS Simulator [8]) via directional access with
notification, and with a COTS component (Rational Rose)
via multi-directional access with notification.

Our framework provides technologies for externalizing
internal activities of COTS tools via hooks [2]; and our
framework provides technologies for realizing
architectural infrastructures that make COTS components
appear like generic (in-house-developed) architectural
components. Thus, directional access with notification is
the COTS equivalent to multi-directional access between
in-house developed components.

3. Matlab/Stateflow Case Study

This section illustrates the use of directional access
with/without data and control notification in the context of
the COTS tool Matlab/Stateflow and two in-house
developed tools called Model Browser and SDS
Simulator[9]. It uses particular interface and
instrumentation technologies for the Case Study. The
space of such technologies from which these particular
instances were selected is presented in the next section.

Matlab provides a powerful modeling environment for
real-time embedded systems and is widely used in the
automotive and aerospace industry to simulate and
validate complex problems. In support of the MoBIES
project (Model-Based Integration of Embedded Systems)
we were asked to provide an integration framework for
COTS tools that are commonly used in that community.
The lack of such integration is generally seen as a major
deterrent to model-based development supported by
multiple tools.

3.1 Directional Access

Although Matlab/Stateflow does not provide a public
interface, its developers at Mathworks built an
undocumented interface. For integration purpose this
distinction is not significant, except for the potential lack
of its stability in future versions.

To provide a more generic and stable interface for
Matlab/Stateflow and to make its interface more widely
accessible, we decided to build an intermediate access
layer on top of Matlab/Stateflow’s native APIs. This
access layer was implemented in the form of directional
access as depicted in Figure 1 (top). The interface
implements the UML statechart meta-model and also uses
the COM middleware platform for accessibility. As such,
the new interface provides COM classes like State,
Transition, Event, or Trigger to access Matlab/Stateflow
statechart elements. Making use of the new public entry
point to Matlab/Stateflow, we adapted a series of tools
that we had developed to interact with it. For instance, we
modified a model browser and a simulator (Figure 2 top)
to browse or simulate the model described in
Matlab/Stateflow. Note that we replaced
Matlab/Stateflow’s simulator with our simulator because
we enhanced the textual notation of statecharts [8]. We
thus wanted to continue using Matlab/Stateflow’s user
interface but have Matlab/Stateflow use our simulator
instead of its built-in one (control integration).

The model browser aids developers in understanding
statechart models by providing different ways of
navigating those models while our simulator uses
Matlab/Stateflow solely as its user interface for drawing
purposesto take advantage of users familiarity with
Matlab/Stateflow.

We found that these tools had quite different
interaction needs with Matlab/Stateflow. For instance, the
simulator’s performance was initially very slow mainly
due to frequent, time-consuming interactions with the
COTS tool (Figure 2 top). Also, since Matlab/Stateflow
maintains its own user interface we encountered complex
synchronicity problems when a user changed the
Matlab/Stateflow model during simulation. Although the
actual interface to Matlab/Stateflow was very reliable, the
chosen architectural style led to a fragile integration with
serious data synchronicity problems. We encountered
similar integration problems with other COTS tools like
Microsoft PowerPoint and Rational Rose.

3.2 Faster Directional Access

Within the context of Directional Access, this
performance problem could be improved by downloading
a local copy of the COTS tool’s data model before
beginning the simulation. Figure 2 (middle) depicts this
better solution and shows that the statechart simulator
(SDS Simulator) consists of its own copy of the statechart
model, a download component that uses
Matlab/Stateflow’s provided interface to create the local
copy, and an interpreter component that is doing the
actual simulation. This solution is an improvement in
terms of performance because accessing the model via the

Matlab/
StateflowInterface

Access

SDS Simulator

Download

State Machine
Interpreter

Matlab/
StateflowInterface

Access

Callback
Manager

SDS Simulator

Synchronizer

Updater
(Observer)

Cacher

State Machine
Interpreter

update
model

update
simulation hooks

partial local
copy of model

local copy
of model

lock
read

Faster Directional Access

Directional Access
with Notification

Matlab/
StateflowInterface

Access

SDS Simulator

State Machine
Interpreter

Directional Access

Figure 2. Directional Access without (top,middle) and with

(bottom) notification in context of Matlab/Stateflow

cached local copy (once established) is faster than inter-
process COM calls to Matlab/Stateflow.

This solution also improves, but does not eliminate, the
model synchronicity problems. The new solution is only
able to simulate the latest downloaded version of the
model but not its current state (i.e., it would be beneficial
if a developer could change the model during simulation
to fix or simulate defects). Also, the new solution may still
encounter synchronicity problems if, during download, the
Matlab/Stateflow model is being changed.

3.3 Directional Access with Notification

While the faster Directional access was satisfactory in
providing a high performance integration with the SDS
Simulator, the remaining reliability problems are
architectural in nature and cannot be improved with
traditional COTS integration frameworks (i.e. by
Directional Access alone). To provide better integration
between the simulator and the COTS tool, three major
challenges have to be resolved:

• Prevent users from making changes to
Matlab/Stateflow while download is in progress

• Update the local copy of the simulator whenever the
Matlab/Stateflow model changes

• Update the current simulation whenever the simulation
is active (running) and the Matlab/Stateflow model
changes

Architecturally, to resolve all these challenges
Matlab/Stateflow must become an active component in
interacting with its neighbors. Directional access with
notification provides an architectural framework for doing
exactly that (Figure 2 bottom).

What we need to accomplish is a means of getting a
notification from Matlab/Stateflow whenever the user
performs an action that changes Matlab/Stateflow’s
model. Via hooks [2], we can monitor operating system
interactions with Matlab/Stateflow. In particular, user
inputs such as key strokes or mouse clicks can be
monitored. It requires very little code (roughly 100 lines
of C code, see pseudo code of hooks() in Figure 3) to
build hooks for Matlab/Stateflow to intercept keyboard
and mouse events and to invoke the Callback Function in
the Callback Manager when these events occur(see also
Figure 2 bottom and Figure 3).

This callback function is responsible for translating the
low-level events it receives from the hooks that
instruments the COTS tool into high-level events of
interest to the components being integrated with the
COTS tool. In particular, it determines whether any
components of the model being shared with these
components have been changed by the COTS tool. To
make this determination, it caches a copy of this model
and compares the model within the COTS tool with this
cached copy. It optimizes this comparison by limiting it to
only the set of model elements currently selected (because
Matlab/Stateflow, like many other COTS tools such as
PowerPoint and Rational Rose, limit user changes to only
those elements of the model that are selected in their
GUI).

Our architecture separates this COTS tool specific
filtering, which translates low-level events into high-level
integration notifications, from the hooks that instrument
the COTS tool’s operation. The callback manager
encapsulates this filtering and provides registration
services for the notifications produced by this filtering.

The callback manager is packaged with the access
methods within a single COM interface to simplify their

use by both the external
software components wishing
to interact with a given COTS
tool and by the instrumented
code inside the COTS tool
providing low-level
notifications of relevant user
activity.

The observers
responsibility is to actually
realize how callbacks to
interested components are
performed; i.e., possibly
filtering unimportant messages
and performing syntactic and
semantic transformations. In
Figure 3 the Updater observer
is a COM object and COM
handles the notification. The
Updater itself performs model

Matlab/
Stateflow

Interface

Callback Manager

SDS Simulator

Synchronizer

UpdaterCacher

State Machine
Interpreter

Operating
System

Access

main()
locate Matlab/Stateflow
install hooks

register(observer)
 add observer
unregister(observer)
 remove observer
callback()
 for all observers
 notify observer
 on exception:
 remove observer
 end

get()
 read Matlab/Stateflow
set()
 write Matlab/Stateflow
 if value changes
 callback()
lock()
 lock event to hook
unlock()
 unlock event to hook

main()
 find interface
 lock()
 download()
 register(Updater)
 unlock()

download()
 get(all)
 write(all)

hooks()
if (event is lockEvent)
 lockedMatlab = true
else if (event is unlockE.)
 lockedMatlab = false
else if (key/mouse event)
 if (lockedMatlab)
 beep
 event = null
 else
 find callback manager
 callback()
 endif
endif

dispose()
 unregister Updater

notify()
 get(selected)
 read(sel.)
 if changed
 write(sel.)

Directional Access
with Notification

Figure 3. Pseudocode of Matlab/Stateflow and SDS Simulator Integration

(this figure is a refinement of Figure 2 bottom).

synchronization within the simulator once it is notified by
Callback Manager that the COTS tool’s model has
changed.

Observers are not automatically created as part of a
component’s interface to a COTS tool. Instead, only a
“template” is provided for constructing such observers so
that their interfaces conform to our frameworks
architecture for interfacing with the callback manager. In
essence, the observer only needs to provide one method
called notify that receives notifications from the CallBack
Manager.

In case of the SDS Simulator, updating the local copy
is only one of two synchronization tasks that its observer
must perform. The second task is to update the running
simulation if it is currently active (not depicted in Figure 3
for brevity). For instance, guard conditions might be
updated as the simulation unfolds. Changes could also
occur that invalidate the simulation (i.e., the current state
is deleted). In such a case, the observer can shut down the
current simulation or proceed with a defined recovery
process.

The above discussion demonstrates how directional
access with notification can be used to solve both the data
synchronization problem (data integration) and the
simulator update problem (control integration).

Our SDS Simulator also needed the ability to prevent
the shared COTS tool’s model from changing during
certain critical periods. This capability was achieved by
using the hooks to actively block user inputs to the COTS
tool during these critical periods and to issue a “beep”: to
let the user know that their input was temporarily blocked.
To notify our hooks to lock or unlock Matlab/Stateflow’s
GUI, our interface sends events to Matlab/Stateflow that
are intercepted by our hooks (see Figure 3).

4. Interface & Instrumentation Technologies

Our case study relied on COM and hooks to interface

and instrument Matlab/Stateflow. This section compares
these and additional technologies.

4.1. Provided Access

Developers are dependent on public interfaces to
interact with COTS tools (data and control). For data

access the most commonly found public interface is the
persistent data storage (i.e., files or databases). Although,
persistent data formats may be undocumented, it is often
not very hard to create parsers that can read them.
Accessing persistent data, however, only provides data
access to COTS tools and, even then, only access to data
that reflects the COTS tool during start-up or last saving.
For more interactive access to COTS tools, middleware
platforms (e.g., COM [22], CORBA [16,21], DLL, RMI
[18]) can be used. Although, middleware platforms are
capable of supporting both run-time data and run-time
control access to COTS tools, most COTS tools do not
natively provide comprehensive interfaces for such access.

4.2. Augmented Access

Because the natively provided interfaces to COTS

tools is often so restricted, a variety of techniques have
been developed to augment this natively provided access.

One general augmented access technique is Hooking
which attaches code to the external or internal interfaces
of a component (Balzer and Goldman [2]). These Hooks
may be purely passive – only observing COTS tool
behavior. But they may also be active – generating new
operations, modifying existing ones, or blocking them.

Another form of augmented access to a COTS tool is
via its binary representation. Given enough understanding
of a COTS tool’s binary code, the code could be
“patched” to replace, delete, or add new functionalities.
This form of COTS access, however, requires low-level
familiarity with the machine code of COTS components.

While these augmented access techniques require tool-
specific development and may be obsoleted by new
releases, they nonetheless provide access to otherwise
inaccessible data and control.

4.3. Hybrid Access (Provided + Augmented)

A common example where a combination of provided

and augmented access is important is a COTS tool that
provides access to its internal state but does not provide
change notification.

Table 1. Provided Access to COTS Tools

Method Description

Persistent
Data Access

Parsing data files or databases. Works well in
cases where the file is kept consistent with the
internal model of the running COTS tool.

Middleware
Access

Run-time access via middleware platforms like
COM, CORBA, or RMI. Works well in cases
where COTS developers foresaw intended
usages and provided necessary access points.

Table 2. Augmented Access to COTS Tools

Method Description

Hooks

Intercept communications to and from COTS
components (or between sub components of the
same COTS tools). Can be used to passively
observe or actively manipulate COTS tools.

Memory /
Executable
Patching

Modifying the binary representation of COTS
tools either on the persistent data level or
during run-time in the RAM. Although very
operating system dependent, low-level
alterations to the memory space of the COTS
tool can be used to analyze and manipulate.

Our case study discussed earlier contains such an
example. Matlab/Stateflow allows statechart diagrams to
be created and modified. Its provided (public) interface
provides access to its model. However, after this data has
been accessed, a Matlab/Stateflow user may continue to
alter the model via the tool’s user interface, making the
previously read data inconsistent with the current state of
the COTS tool.

By combining its provided interfaces with augmented
access a data synchronized interface was created. This
combined use of public and augmented access methods
has been applied very effectively to several other COTS
tools including Rational Rose, Microsoft PowerPoint, and
Microsoft Word.

5. Discussion

5.1 Clean Interfaces for COTS Tool Integration

The Case Study illustrated the integration of a specific

COTS tool with newly developed components using our
integration framework. Our framework provided a
standardized interface for those components to interact
with the COTS tool for both access and notifications.
Those components were architecturally separated from the
low-level mechanisms required to support the COTS
tool’s side of this interface.

While the detailed issues of interfacing to, and
augmenting, the native capabilities of COTS tools have
not been eliminated, our framework provides a
standardized way of encapsulating them and cleanly
interacting with them through generic interfaces.

This is an important separation since a COTS tool,
once instrumented and encapsulated with an adequate
interface, becomes a true architectural component that can
be integrated with a wide variety of other components.
Our framework thus shows that separation of concerns
[20] is possible even when COTS tools are being
integrated with other components.

As an example of this separation, our simulator can use
either Rational Rose or Matlab/Stateflow as its graphical
front-end with only minor changes to its code (Figure 4).

Note that the generic usefulness of a COTS component
still depends on the quality of the implemented interface.
Nonetheless, the interface can be augmented later if there
is a need. It is also important to note that neither the
hooks, nor the concept of change notifications are new.
They have existed for some time (i.e,. message passing in
development environments [17]) . The accomplishment of
this work is our framework for integrating complex, large-
scale, and partially-accessible COTS tools through
standardized interfaces that encapsulate access and change
notification augmentations of their native capabilities.

While the example integrations presented in this paper
employ a narrow set of implementation technologies, our
framework is generic and can employ the entire set of
technologies discussed in the Interface and
Instrumentation section.

Our integration framework is generic in the set of
architectural styles it supports. For instance, architecture
description languages [14] (ADLs) often use distinct
interaction technologies and protocols. As such,
components may use synchronous calls (i.e., Main-
Subroutine Style), asynchronous calls (i.e., RMI), events
[12], shared memory, explicit data connectors [13],
middleware platforms (i.e., COM or CORBA) or other
communication methods. This abundance of interaction
methods implies many different architectural styles.

Our framework treats a COTS tool with its access
methods and callback manager as a single software
component. The choice of architectural style determines
how the interactions between this (enhanced) COTS
component and others will be realized. We thus do not
build observers for these COTS components but
implement them as part of the components that need to
interact with them.

5.2 Improved Plugability

Thus far, we have discussed integration styles,

topologies, and infrastructures separately. They can
nevertheless be mixed within a single system. Figure 4
depicts the integration of multiple COTS tools (Rational
Rose and Matlab/Stateflow) and components we
developed (Model Browser and SDS Simulator) using our
integration framework (Rose change notification and
observers are not fully implemented and thus shown in
gray). As can be seen, each of our components uses a
different framework of integrating with Matlab/Stateflow:

1. the Model Browser uses directional access (Figure 1
top);

2. the SDS Simulator uses directional access with data
and control notification to talk to Matlab/Stateflow

Model
Browser
(in-house)

Rational
Rose

(COTS)

Matlab/
Stateflow
(COTS)

Interface

A

CM

Obs(1)

Interface

A

CM

Obs(2)

SDS
Simulator
(in-house)

Figure 4. Multi-Dimensional Integration with Matlab/Stateflow

(Figure 1 bottom) and simple directional access
(Figure 1 top) to talk to Rational Rose;

3. the Rational Rose COTS tool uses uni-directional
access with data notification (Figure 1 bottom) to talk
to Matlab/Stateflow.

Our case study thus demonstrates that integration
frameworks can be mixed during run-time to satisfy
individual integration needs.

Our framework improves the plugability of COTS tools
because newly developed components, like the SDS
Simulator, can be built under the assumption that it is
being integrated with an idealized COTS component. The
simulator can thus be made insensitive to the particular
choice of COTS tool (Rational Rose, Matlab/Stateflow, or
some other tool) being used as its graphical front-end.

While we take the stance that reuse is significantly
better than re-development, it may not always be possible
to reuse a particular COTS tool given the limitations of
augmented access. There is a non-obvious trade-off
between the cost of re-development and reuse, and given
the diverse nature of COTS tools there is no simple way
of predicting which is better.

5.3 Open Issues

While our integration framework provides standardized

interfaces that encapsulate access and change notification
augmentations of COTS tools’ native capabilities, it does
not dictate how those interfaces should be realized. This
keeps our solution generic and lightweight.

Also, our work does not address the versioning
problem that is inevitable with COTS tools. A new
version of a COTS tool may not be compatible with
previous augmentations occurring within our encapsulated
interface. While we have experienced only minor
incompatibilities that were easily resolved with the COTS
tools we have been working with, it is certainly possible
that major incompatibilities could occur. This possibility
would make it more difficult and resource consuming to
upgrade those COTS tools.

Finally, while our integration framework could be
applied to any COTS tool that maintains evolving data to
be shared with other components, we have focused on
COTS tools with a user driven GUI. This has limited our
experience with the broader set of COTS tools that might
be integrated with other components.

6. Conclusion

Reusing commercial-off-the-shelf tools (COTS) has the
potential of significantly improving software development
speed and cost. However, COTS reuse also introduces
new complexities we have traditionally been ill equipped
to handle. This paper discussed how augmented access to

COTS tools can complement their native access to
increase the observeability and usability of those COTS
tools. It also showed how this technology can be used to
interface and instrument COTS tools so that they have a
clean, standardized interface that can be “plugged” into a
wide variety of software systems. We discussed two basic
integration frameworks that can be used concurrently and
interchangeably and we discussed different integration
topologies and styles. The paper thus contributes a
framework for adding data and control notification to
traditional directional access methods.

Although, we do not claim that all COTS tools can be
integrated via our framework, we do believe that it has
wide applicability. We demonstrated our framework in
validating it on several large-scale, commercial tools such
as Matlab/Stateflow, Microsoft PowerPoint, Microsoft
Word, and Rational Rose as well as several tools we
developed like the Model Browser, the SDS Simulator,
and UML/Analyzer. We will continue to validate our
approach on other COTS tools.

Acknowledgements

Our thanks to Neil Goldman, Marcelo Tallis, Dave
Wile, and all anonymous reviewers. This work was
supported by DARPA under agreements F30602-00-C-
0218, F30602-99-1-0524, and F30602-00-C-0200.

References

[1] C. Abts and B.. Boehm (editors). Proceedings of

the Focused Workshop on System Integration with
Commercial-Off-The-Shelf (COTS) Software, Los
Angeles: University of Southern California (USC),
1996.

[2] Balzer, R. and Goldman, N., "Mediating
Connectors," Proceedings of the 19th IEEE
International Conference on Distributed Computing
Systems, pp. 73-77, May 1999.

[3] B.W. Boehm, C. Abts, A.W. Brown, W. Chulani,
B.K. Clark, E. Horowitz, R. Madacy, D. Reifer, and
B. Steece. Software Cost Estimation with
COCOMO II, New Jersey: Prentice Hall, 2000.

[4] Boehm, B. and Abts, C., COTS Integration: Plug
and Pray? IEEE Computer, vol. 32, pp. 135-138,
1999.

[5] G. Booch, J. Rumbaugh, and I. Jacobson. The
Unified Modeling Language User Guide, Addison
Wesley, 1999.

[6] Egyed, A., "Semantic Abstraction Rules for Class
Diagrams," Proceedings of the 15th IEEE

International Conference of Automated Software
Engineering (ASE), Sept. 2000.

[7] Egyed, A., Medvidovic, N., and Gacek, C., A
Component-Based Perspective on Software
Mismatch Detection and Resolution IEE
Proceedings Software, vol. 147, pp. 225-236, 2000.

[8] Egyed, A. and Wile, D., "Statechart Simulator for
Modeling Architectural Dynamics," Proceedings of
the 2nd Working International Conference on
Software Architecture (WICSA), Amsterdam, The
Netherlands, pp. 87-96, Aug. 2001.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns Elements of Reuseable Object-
Oriented Software, Addison Wesley, 1994.

[10] Garlan, D., Allen, R., and Ockerbloom, J.,
Architectural Mismatch or Why it’s hard to build
systems out of existing parts IEEE Software, vol.
pp. 17-26, Nov, 1995.

[11] Goldman, N. and Balzer, R., "The ISI Visual Editor
Generator," Proceedings of the IEEE Symposium on
Visual Languages, 1998.

[12] Luckham, D. C. and J. Vera, J., An Event-Based
Architecture Definition Language IEEE
Transactions on Software Engineering, vol. Sep,
1995.

[13] Medvidovic, N., Rosenblum, D. S., and Taylor, R.
N., "A Language and Environment for Architecture-
Based Software Development and Evolution,"
Proceedings of the 21st International Conference on
Software Engineering (ICSE'99), pp. 44-53, May
1999.

[14] Medvidovic, N. and Taylor, R. N., A Classification
and Comparison Framework for Software
Architecture Description Languages IEEE

Transactions on Software Engineering, vol. 26, pp.
70-93, Jan, 2000.

[15] Morisio, M. , Seaman, C. B., Parra, A. T., Basili, V.
R., Kraft, S. E., and Condon, S. E., "Investigating
and Improving a COTS-Based Development
Process," Proceedings of the 22nd International
Conference on Software Engineering (ICSE), pp.
32-41, June 2000.

[16] Object Management Group. The Common Object
Request Broker: Architecture and Specification,
1995.

[17] Reiss, S. P., Connecting Tools Using Message
Passing in the Field IEEE Software, vol. 7, pp. 57-
66, Jul, 1990.

[18] Sun Microsystems. Java Remote Method Invocation
- Distributed Computing for Java, 2001. (UnPub)

[19] Tallis, M. and Balzer, R., "Document Integrity
through Mediated Interfaces," Proceedings of the
2nd DARPA Information Survivability Conference
and Exposition (DISCEX), 2001.

[20] Tarr, P., Osher, H., Harrison, W., and Sutton, S. M.
Jr., "N Degrees of Separation: Multi-Dimensional
Separation of Concerns," Proceedings of the 21st
International Conference on Software Engineering
(ICSE 21), Los Angeles, CA, pp. 107-119, May
1999.

[21] Vinoski, S. , CORBA: Integrating Diverse
Applications Within Distributed Heterogeneous
Environments IEEE Communications Magazine,
vol. Feb, 1997.

[22] Williams, S. and Kindel, C., The Component Object
Model: A Technical Overview Dr. Dobb's Journal,
vol. Dec, 1994.

